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Ultimate Bistability: Hysteretic Resonance of a
Slightly-Relativistic Electron

A. E. KAPLAN

Abstract—It was recently predicted by us that cyclotron resonance of
free electrons in vacuum and conduction electrons in semiconductors
may exhibit bistable and hysteretic behavior which is due to the relativ-
istic mass-effect (or pseudo relativistic—in semiconductors). Consistent
with this prediction, the hysteretic cyclotron resonance of a trapped
single electron in vacuum has recently been experimentally observed by
Gabrielse ef al. A preliminary estimate shows that their experimental
results are consistent with the relativistic nature of the observed hys-
teresis. In this paper we consider this phenomenon as ultimate bista-
bility since it is based on the most fundamental mechanism of nonlin-
earity (the relativistic mass-effect), involves the interaction of an EM
wave with the simplest single elementary particle, and exhibits
the first known intrinsic bistability with no macroscopic optical feed-
back. We also show that a hysteretic resonance of a single electron based
on relativistic effects is feasible also in a parabolic potential (with no
magnetic field required to attain a resonance).

INTRODUCTION

PTICAL BISTABILITY {1] is a rapidly expanding

and promising field in nonlinear optics which offers
both new insights in nonlinear interactions of light with
matter and potentials for superfast switching devices for
optical computers and optical signal processing. There-
fore, the fundamental physical problems related to that
phenomenon have become important as well. One of the
interesting questions is: what is the ultimate physical level
of bistable interaction of light with matter? Is it feasible to
realize (and possibly, to exploit) the bistable interaction at
the microscopic level?

Recently it was predicted by us [2] that even a slight
relativistic mass-effect of a single free electron may result
in large nonlinear effects such as hysteresis and bistability
in cyclotron resonance under action of an electromagnetic
(EM) wave. This effect may be viewed as the ultimate and
fundamental one in many respects as follows:

1) it suggests the bistable interaction of an EM wave
with the single simplest microscopic physical ob-
ject—an electron;

2) the nonlinearity that makes the bistable interaction
possible is based on one of the most fundamental
physical effects—a relativistic change of electron
mass;

3) it offers bistability based on the intrinsic property
of an microscopic object rather than on macroscopic
optical feedback in a nonlinear medium.
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Very recently, consistent with this prediction, the hys-
teretic (bistable) cyclotron resonance of a free electron has
been discovered by Gabrielse et al. [3] in an experiment
in which a single electron has been trapped in a Penning
trap for the period of time as long as 10 months. The elec-
tron was weakly confined in a Penning trap and oscillated
in a direction which is orthogonal to the cyclotron motion
with a frequency that was measurably shifted in propor-
tion to the electron’s kinetic energy. Our preliminary es-
timate shows (see Section II) that the experimental results
are consistent with some of the theoretical predictions
which confirms the relativistic nature of the hysteretic ef-
fect.

In [2] it was also suggested that the analogous effect
(i.e., hysteretic cyclotron resonance) can also be expected
in semiconductors with a narrow energy gap between con-
duction and valence bands. This problem was later ad-
dressed in [4]. In semiconductors, the mass-effect re-
quired for the hysteretic resonance is attributed to the
nonparabolicity of the semiconductor conduction band
which causes a pseudorelativistic dependence [5], [6] of
the effective mass of conduction electrons on their mo-
mentum or energy.

In both the cases (i.e., free-space electrons and con-
duction electrons), the hysteretic resonance is attributed
to 1) the dependence of the cyclotron frequency of forced
oscillations on the relativistic mass of the electron, and
hence on its momentum (or kinetic energy), and 2) the
presence of finite energy losses (in particular, the most
fundamental losses which are due to the EM radiation of
rotating electron). The fact that the frequency of cyclotron
motion is decreasing as the kinetic energy of the particle
increases, is well know in the theory of the cyclotron res-
onance at relativistic energies [7]. This fact led to the syn-
chrotron [8] and synchro-cyclotron [9] principles of par-
ticle acceleration. The decrease of the frequency of particle
rotation (which is due to the increase in the particle en-
ergy) in the synchro-cyclotron is compensated by a cor-
responding decrease of the frequency of the applied voit-
age with time.

Although the effect of the relativistic change of cyclo-
tron frequency was discussed basically in application to
ultrarelativistic particles [7]-[9], it is obvious that it holds
true for any energy of cyclotron motion. From an experi-
mental standpoint, the problem was that at low kinetic en-
ergy the effect becomes very small since it is proportional
to B% (where 8 = v/c) if B2 << 1. However, with the
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increased accuracy and sensitivity of new measurements
of single particles in the Penning trap [10], the effect of
the ‘slight relativistic change of cyclotron frequency has
recently been observed [11] also for the kinetic energies
of electron as low as a few volts. On the other hand, it was
demonstrated [2] that even such a slight relativistic change
of cyclotron frequency may result in strong hysteretic
jumps in cyclotron resonance at low excitation energies.
The additional factor required for the hysteresis to occur
is the presence of energy losses, and therefore the finite
linewidth of the cyclotron resonance. For example, the
most pronunced jump (namely that one from the higher
excitation branch to the lower one) is observed when the
swept frequency of the driving EM field passes the rela-
tivistically shifted resonant point at which the kinetic en-
ergy of an excited electron reaches the maximal possible
level (determined by the energy losses); see Fig. 1(a). The
jump then occurs because the excitation cannot be sup-
ported at that high level anymore since when the detuning
further increases, the relativistic shift of the resonance
frequency rapidly decreases, which results in sudden
switching from an on-resonant state to an off-resonant one.
The critical condition for hysteresis (and therefore, bista-
bility) to occur is that the relativistic shift of the cyclotron
frequency must be sufficiently greater than the linewidth
of the resonance. Since the linewidth of the cyclotron res-
onance in vacuum is determined only by the resonant fre-
quency, the electric charge, and the rest mass of the elec-
tron (see below, Section I), the critical characteristics of
this effect are also of fundamental nature. The hysteretic
cyclotron (as well as noncyclotron, see Section III) reso-
nance of electron may be therefore considered as the ““ul-
timate”’ example of hysteresis in a classic nonlinear oscil-
lator.

The hysteresis in a nonlinear oscillator based on a rel-
ativistic electron resembles the analogous effects in the os-
cillators with anharmonic (i.e., nonparabolic) potential
[12] (in particular, the so-called Duffing oscillator, e.g.,
pendulum) or in so-called nonlinear parametric systems
[13]. One has to note though that there are some consid-
erable differences between nonlinear resonance of relativ-
istic electrons and of oscillators with nonlinear potential.
First, the latter oscillators can demonstrate hysteretic ef-
fects even when they have just one degree of freedom (i.e.,
when they are described by a scalar nonlinear differential
equation of second order, or by the set of two equations of
first order), whereas the cyclotron resonance of an elec-
tron in a Penning trap is to be described at least by four
equations of first order (see Section II below). This cor-
responds to the fact that at least two degrees of freedom
must be taken into consideration. Therefore, under the ac-
tion of a sufficiently strong driving wave, the motion of
the electron may demonstrate quite different kinds of insta-
bilities and chaotic behavior as compared to the one-di-
mensional nonlinear oscillator. Second, the very nature of
the relativistic nonlinearity is different from systems with
a nonlinear potential. This is due to the fact that in the
relativistic case the nonlinear terms are the product of
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speed and coordinate whereas in the ‘‘anharmonic poten-
tial”’ case they are only functions of the coordinate. For
example, in the Duffing oscillator the first nonlinear term
is proportional to x> (where x is the coordinate), whereas
in the simplest case of noncyclotron resonance of an elec-
tron (see Section III below), the nonlinear term is propor-
tional to xi’. It turns out, however, that the truncated
equations of motion of an electron (and especially, the
steady-state characteristics [2]) are very close [14] to those
for systems with nonlinear potentials with the same de-
grees of freedom. However, this is valid only for the so-
called main resonance, i.e., that one for which the driving
frequency w is near the linear eigenfrequency of the sys-
tem w,. For other nonlinear resonances, in particular, for
a subharmonic resonance of the third order (i.e., when w
= 3w,), the behavior of those two kinds of systems could
be quite different.

The resemblance of the system in consideration to a
nonlinear oscillator must not obscure the fact that, from
the electrodynamic standpoint, the bistable (hysteretic)
resonance of a single electron (as well as conduction elec-
trons in solid state) is different from other kinds of optical
bistability. One of the important features of this effect is
that it is based on the intrinsic properties of the micro-
scopic components, not on the macroscopic optical feed-
back. This differs from conventional mechanisms of op-
tical bistability [1] in that so far they have been based on
macroscopic nonlinear properties of the media. Indeed, a
nonlinear change in macroscopic susceptibility under ac-
tion of the strong EM wave provides a dramatic change in
the condition for optical propagation of this wave under
various special circumstances which, in turn, leads again
to the change in the susceptibility. This so-called optical
feedback in nonlinear macrosystems results in the exis-
tence of multistable (in particular, bistable) steady states.
No such optical feedback exists in the hysteretic electron
resonance. One of the consequences of this fact is that
those effects exhibit also cavityless (or resonator-free) bi-
stability [15]. Recently, some new mechanisms of optical
bistability based on the intrinsic bistability which resemble
bistable cyclotron resonance (in the sense that they are at-
tributed to the nonlinear shift of some resonant frequency
of material) have been proposed [16], [17] and experi-
mentally observed [16].

In this paper we discuss the general equation of the rel-
ativistic electron motion (Section I), and briefly review the
theory of hysteretic (bistable) cyclotron resonance of a sin-
gle free electron and conduction electrons in semiconduc-
tors (Section II). We show also that in fact the presence
of a magnetic field (which is required to attain a cyclotron
resonance) is not a necessary condition for a hysteretic
effect to occur; one may attain a bistability based on rel-
ativistic mass-effect even in any one-dimensional oscilla-
tor having parabolic potential well (Section III).

I. EQUATION OF MOTION

We assume that the electron (with an electrical charge
e and a rest mass m,) moves under the combined action of
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the static magnetic field H, H,, static electric field g, and
driving electromagnetic (EM) wave Em(t) We treat this
problem classically. The equation of motion for the electon
moving with arbitrary velocity v is [18]

dmv)/dt = (elc) U X Hy + eEx + F;  (1.1)
m = my1 — |G|cH~"? (1.2)

where HE is the total magnetic field (mcludmg the EM
wave component HEM, i.e., HE = H + HEM) EE =
Em + g is the total electric field, and the term F, repre-
sents energy losses of the electron. In the ultimate case in
which the losses are caused by EM radiation of the rotat-
ing electron (and |v| << c¢) this term can be written as
(18]

F, = &3¢ d*ldr. (1.3)

In the general case the losses may be much larger and
caused by various factors. The force is then propomonal
to the velocity of the electron, e.g., F = | = —ymywyU, where
7 is the dimensionless bandwidth of cyclotron resonance.
The radiation losses can also be represented by this for-

mula, since one can assume [18] that d*5/dt? =~ —wl¥,
which yields
2¢%w 2
=0 Sk, << 1 1.4
Yrad 3m(,c3 3 VK, ( )

where r, = ¢*/m,c* = 2.8 x 107" cm is an electron ra-
dius and k, = wy/cis a resonance wave number. If the EM
field is a plane wave, then HEM =k x Em/w (where w is
a frequency of EM field, and & = w/c), and (1) can be
written in the form

0 < 7)

- U X H,

c

v - 2 -
+ e <; X [k X E,] — g>(1‘5)

where the term e¥ X [k X Ein]/w is a radiation force
applied to the electron. Usually this term is neglected (see,

g., [14]), except in [19] in which, however, losses and
other possible forces like potential g were not considered.
However, all of these interactions become important [2]
when considering excited steady states (and multistabil-
ity) of the electron under the action of the sufficiently in-
tense EM wave. Equation (1.5) is the general equation
governing the nonlinear resonance of electron. In the case
of slight relativism (v® << ¢?), the mass m in the left-
hand side of (1.5) is written as m = m,(1 + v*/2¢?), where
the term v*/2¢? is responsible for small nonlinear relativ-
istic effects.

d(mU)ldt + ym,w, U = e <Em +

II. HyYSTERETIC (BISTABLE) CYCLOTRON RESONANCE OF
ELECTRONS IN VACUUM AND SOLIDS

Consider the case in which the static magnetic field H,
is sufficiently strong (H, >> g, E;;) and the plane EM
wave Eln (with amplitude E) propagates along the z axis
parallel to H The field H, provides a cyclotron resonance
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with the unperturbed frequency w, = eH,/m,c. We also
assume that a small static electric field g(z) is applied along
the z axis to arrange a trapping [10] of the electron and to
compensate a radiation force. We introduce dimensionless
notations

eE 1 eg(z) 1
myc* k,’ @) = myct k, @.1)
All these variables (as well as v) are supposed to be very
small compared to unity. We also asssume that the EM
wave E, is circularly polarized (which maximizes the ex-
pected effect) and rotates in the same direction as the elec-
tron, i.e., g = p[é, sin (wr — kz) + é, cos (wt — k2)].
The required solution to (1.5) can then be written in the
form

v
c

B:

B(t,2) = Blé, sin (wt — kz + @)

+ é,cos (wt — kz + @)] + B¢, (2.2)

where the unknown variables 3, 3,, and ¢ vary little in the
time w ™. In the slow- -varying envelope approximation, one
can write down the set of truncated first-order equations

Blw, = =B + p cos ¢;
dlw, = B, — (A + B*2 + u sin ¢/B) (2.3)
Blw, = = ¥B. — p(2) + pBcosd; z=ch. (2.4)
Here A = (w — w,)/wg << 1; A is a dimensionless res-
onant detuning. The steady-state solution (d/dr = 0) is
thus determined by the relationships
W= Bl + (A + B
tan ¢, = —(A + B2/2)/y (2.5)
B)s =05 p(z) = A7 (2.6)
where the subscript s’ labels characteristics of the

steady-state regime. Under the threshold conditions
B> = (163V3) v, A< A= —9VE, @)

(2.5) yields a three-valued solution for 8, (Fig. 1).
At the threshold point this value is 83, = 2/ V3 (curve 2
in Fig. 1), and the radius of orbit is r = By/k, << \,.
The condition (2.7) warrants the existence of at least one
jump (from the lower steady state branch to the uppper
one in Fig. 1(a). However, in order for the hysteresis to
exist (i.e., to warrant the existence of the second jump
from the upper branch to the lower one in Fig. 1(a), one
has to require nonzero losses, i.e., )Y > 0. In the case of
sufficiently strong pumping (i.e., u? >> p2), the detunmg
Ay, and the kinetic energy of the excited electron 82/2 that
correspond to the second jump follow from (2.5) as

A = —pi2y (2.8a)

also,
h = —B2. (2.8b)

In such a case, the upper branch of the function 83(A)
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Fig. 1. The plots of normalized kinetic energy of the electron 32/2 (a) ver-

sus normalized resonant detuning A/vy for various intensities of incident
EM field, and (b) versus normalized incident intcnsil;f 1212+ for various
detunings. Curves: (a) 1, u2/2v* = 1; u2/2v* = 243)"; 3, u?/2y* = 3; (b)
L, Aly = 0;2, Aly = =3, 3, Aly = —3.

in the range A, < A < 0 is approximately a linear one:
B%/2 = —A. Although the experithental data in [3] are
insufficient to confirm (2.8a) (since the driving field inten-
sity at the location of the electron was not reported), they
are in good agreement with (2.8b) and with the linearity
in the function Bf.(A). Indeed, using Fig. 2 in Ref. [3],
one estimates |24,/87| = 0.92 which is quite close to 1.0
as required by (2.8b). This confirms that the nonlinearity
of the system is attributed (at least to the large degree) to
the relativistic mass-effect.

In the case of the multivalued solution the examination
of (2.3) and (2.4), linearized in the close vicinity of
the steady-state solutions (2.5) and (2.6), shows that only
those states are stable which satisfy the energy criterion
d(ﬁ‘f)/d(p.z) > 0 (solid branches of the curves in Fig. 1);
otherwise, they become unstable (dashed branches in Fig.
1). Let us make some quantitative estimates for the thresh-
old parameters (2.7). A magnetic field of strength H, =
100 kG produces the cyclotron frequency w, = 1.7 X 10"
g1 (A, ~ 1.07 mm). Then in the ultimate case of radia-
tion losses, the resonance width isy ~ 10", which yields
the threshold field amplitude as small as E;, = 1.7 x 107!
V/cm, and the kinetic energy as small as 8%/2 = 12 X
107", This is, in fact, even near o' times smaller than
a quantum limit of the energy of excitation which is 2hw,/
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mc? (here « = ¢*/hc = 1/137 is the fine-structure con-
stant). Therefore, in the close vicinity of the threshold
(2.7), only the quantum approach can give an adequate
description of the phenomenon, whereas for sufficiently
strong driving field (u >> u,) the classical results (and,
in particular, hysteretic jumps) remain valid. The experi-
mental data [3] obviously represent the hysteretic effect in
the classical limit. The further improvement of the stabil-
ity and bandwidth of the source of the driving radiation
may hopefully bring the experiment to the threshold mea-
surements and therefore, to the quantum limit of the hys-
teresis effect.

Although the above discussion was dealing with a single
free electron, the hysteretic cyclotron resonance may also
exist for conduction electrons in solids, in particular in
semiconductors [4]. This effect is feasible due to the non-
parabolicity of the semiconductor conduction band which
causes a pseudorelativistic behavior [5], [6] of the effec-
tive mass of conduction electrons in the narrow-gap semi-
conductors such as, e.g., InSb. Indeed, in narrow-gap
semiconductors which can be described by the Kane two-
band model [5] with isotropic nonparabolic bands, the
conduction band energy W (which is an analog of kinetic
energy) can be written as

W(p) = Nm#¥*vs + p*vl 2.9)

where p is the momentum of the conduction electron,

m¥ is its effeﬁime_mass at the bottom of the conduction
band, v, = VWg;/2m# is some characteristic speed, and

W is the band gap (the energy W in (2.9) is measured
with respect to the middle of the gap). The velocity U of
the conduction electron is given by [20] U(p) = aW(p)/
ap, which yields

7= mivINT — v U = pimN1 + pApt (2.10)

where p, = m¥v, = VWgm¥*/2 is some characteristic mo-
mentum. One can see that relations among W, v, and p
are completely relativistic, with v, playing a role as an
“effective speed of light,” and W/2 as an “‘effective rest
energy’’ of the electron. For InSb, W = 0.24 eV, m¥ =
0.014 m, so that v, ~ 1.15 x 10® cm/s << c. The fact
that in semiconductors m} << m, and v, << ¢ provides
new interesting opportunities: 1) the smallness of the ef-
fective mass m} results in a considerable increase of the
cyclotron frequency (up to 70-80 times) for the same mag-
netic field and therefore, helps bring the experiment to the
infrared range, and 2) the smallness of v, allows one to
attain a fairly low critical pumping intensity (although still
much greater than in vacuum) for observation of the effect
even taking into consideration the much faster relaxation
in semiconductors. For example, in order to use a radia-
tion of CO, laser with A, ~ 10.6 um, the magnetic field
H, ~ 140 kG is required to observe a cyclotron resonance
in InSb. Making a reasonable assumption of y ~ 10 ~2,
one estimates [4] the critical power required to observe a
hysteretic resonance of the order ~ 240 W/cm?®.

It is interesting to note that a seemingly similar effect
based on the electron-spin resonant shift in metals if there
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is an appreciable degree of nuclear polarization was briefly
mentioned in [21] (although it is suggested in [21] that the
resonant line shifts toward higher frequencies as opposed
to the relativistic or pseudorelativistic mechanisms of non-
linearity discussed above). It was also theoretically shown
that another hysteretic effect in self-consistent magneti-
zation based on the inverse Faraday effect is feasible in
semiconductors [22] which critically depends on concen-
tration of conduction electrons (or carriers) with constant
effective mass; this apparently suggests a phase transition
kind of hysteresis (albeit, not a pseudorelativistic one).

ITI. BiSTABLE NONCYCLOTRON RESONANCE OF A
SLIGHTLY-RELATIVISTIC ELECTRON

In the previous sections, the bistable effect was dis-
cussed which is based on rotation of a slightly-relativistic
electron in a magnetic field (i.e., on a nonlinear cyclotron
effect). However, it is obvious that the presence of a mag-
netic field is not a necessary condition; the only factors
substantial for the bistable resonant excitation to exist are
the presence of nonlinearity (in our case—relativistic
mass-effect) and a sufficiently sharp resonance. The latter
can be provided by any potential well. In the simplest and
probably most characteristic case it is a parabolic potential
well. This would correspond to a conventional linear os-
cillator had the electron mass not varied due to relativistic
effect. We assume that the electron oscillates along the x
axis, and is excited by the driving periodic electric field
E;, = E sin wt, which is directed along the same axis.
Thus, in (1.5) one has to assume H, = 0, and

L _m .

g = =2 wixe, 3.1)
e

where ? is an eigenfrequency of a respective linear os-

cillator. We assume as usual that the motion is only slightly

relativistic (i.e., ¥* << ¢?). In such an idealized case, the

motion of the electron is governed by the equation

ek
2+ yw.k + xwX1 - P12¢%) = = sin wt
mO

(3.2)

This equation is very similar to the Duffing equation ex-
cept that instead of a nonlinear term x* (which would cor-
respond to the anharmonic potential) it has the term xi.
As mentionied above, this does not result in a significant
difference in the truncated dynamic equations nor in char-
acteristics of steady-states for the main resonance (i.e., in
the case when w = w,). However, the difference will be-
come substantial for higher order nonlinear resonances,
e.g., for generation of the third harmonic (i.e., when
3w = w,) or the third subharmonic (i.e., when w = 3w,).
We use the same envelope approximation as in Section II

and look for the forced solution of (3.2) in the form
x(1) = v,(0) @™ sin (wr + ¢) (3.3)

where the maximal speed of electron U, and its phase ¢
are slow varying functions of time. We introduce again a
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dimensionless variables

W - w eE 1
; A= —2 = ¢ - .
w, # m,c? k, 3-4)

Bm =

o |5

and assume that all of them are much smaller than unity.
Then, in the same fashion as in Section II, one gets
truncated equations for their dynamics

Bulw, = —=yB,/2 + u cos ¢/2 (3.5)
dlw, = —(A + B2/32 + u sin $/28,)  (3.6)

which (with modified coefficients and B, = 0) reproduce
(2.3). The steady-state regimes (d/dr = 0) follow imme-
diately:

Wh=ABLIV/A + (A + BE327 (3.)
-2(A + B¥32)/y (3.8)

which again reproduces (2.5) with modified coefficients.
By introduction i = u/8, ¥ = y/2, and B, = 8,/4, (3.7)
and (3.8) are reduced exactly to (2.5) for ji and ;. There-
fore, taking into consideration (2.7) and (3.4), the thresh-
old conditions required in order to observe bistability of
excitation of a slightly-relativistic oscillator (3.2) are

[eE| > 16 kyn,c*(y/24/3)*%; o — w, > w,yV3/2.
(3.9)

If the damping rate v is again due to radiation of EM wave
by the electron (1.4), the required threshold intensity of
the driving field is of the same order of magnitude as that
one discussed in Section II for the bistable cyclotron res-
onance in vacuum.

tan ¢ =

CONCLUSION

In conclusion, we demonstrated the feasiblity of hyster-
etic behavior and bistability of the cyclotron resonance of
free electrons in vacuum and of conduction electrons in
semiconductors under the action of sufficiently strong qua-
siresonant driving radiation. We showed also that the same
effect must be peculiar to a conventional (i.e., noncyclo-
tron) resonance of a slightly-relativistic electron in a har-
monic potential well. Further research should involve
quantum as well as kinetic theory of the phenomenon. Even
far from the onset of the hysteresis, the action and the
strong pumping should cause a dramatic change in the lo-
cation and the shape of the resonant curve of cyclotron
resonance, in particular, the shape of the resonant curve
as a function of the frequency (or magnetic field) should
become drastically asymmetrical. This effect may provide
a new experimental method to measure the nonparabolic-
ity of the conduction band in semiconductors, effective
mass, nonlinear relaxation, etc. Probably the most attrac-
tive and fundamental feature of all these effects is that for
the first time they provide a unique opportunity to study
hysteretic and bistable phenomena at a quantum level
which is especially true in the case of a single trapped
electron in a free space.
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